Principal Component Classi cation for Fractal Volume Compression

نویسندگان

  • Wayne O. Cochran
  • John C. Hart
  • Patrick J. Flynn
چکیده

Fractal volume compression is an extension of fractal image compression to volumetric data. The technique partitions the volume into range blocks which are replaced in the output dataset by transformations that map larger portions of the volume into blocks that resemble the original range partitions. Principal component analysis provides a classi cation system which directs the search for these self-similar maps to likely candidates. Classi cation also allows for simpler maps to represent less complex range blocks thus providing a higher compression rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Volume Compression

This research is the rst application of fractal compression to volumetric data. The various components of the fractal image compression method extend simply and directly to the volumetric case. However, the additional dimension increases the already high time complexity of the fractal technique, requiring the application of sophisticated volumetric block classi cation and search schemes to oper...

متن کامل

Codebook Clustering by Self-organizing Maps for Fractal Image Compression Institut F Ur Informatik | Report 75 1

A fast encoding scheme for fractal image compression is presented. The method uses a clustering algorithm based on Kohonen's self-organizing maps. Domain blocks are clustered, yielding a classi cation with a notion of distance which is not given in traditional classi cation schemes.

متن کامل

Fractal Image Compression on Mimd Architectures I: Basic Algorithms

In this paper parallel algorithms for fractal image compression on MIMD architectures are introduced, classi ed, and discussed. The crucial point for the choice of a suitable parallelization strategy is the memory capacity of a processor element of the target architecture, therefore the classi cation follows the memory demand of the algorithms. We present experimental results of all main-repres...

متن کامل

The Application of Artiicial Neural Networks to Stellar Classiication

We are working on a project to automate the multi-parameter classiication of stellar spectra using Principal Components Analysis (PCA) and Artiicial Neural Networks. We present here the usefulness of PCA as a form of spectral data compression, and our results to date of classi-cation on the MK system.

متن کامل

The Application of Arti cial Neural Networks to

We are working on a project to automate the multi-parameter classiication of stellar spectra using Principal Components Analysis (PCA) and Artiicial Neural Networks. We present here the usefulness of PCA as a form of spectral data compression, and our results to date of classi-cation on the MK system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995